

Kinematics

1D Kinematics (definitions)

$$
\begin{array}{ll}
v_{a v g}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}, & v=\lim _{\Delta t \rightarrow 0} \frac{x(t+\Delta t)-x(t)}{\Delta t}=\frac{d x}{d t} \\
a_{a v g}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}, & a=\lim _{\Delta t \rightarrow 0} \frac{v(t+\Delta t)-v(t)}{\Delta t}=\frac{d^{2} x}{d t^{2}}
\end{array}
$$

3D Kinematics (definitions)

$$
\begin{aligned}
& \vec{v}_{\text {avg }}=\frac{\vec{r}_{2}-\vec{r}_{1}}{t_{2}-t_{1}} \vec{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}}{\Delta t}=\frac{d \vec{r}}{d t}=v_{x} \hat{\imath}+v_{y} \hat{\jmath}+v_{z} \hat{k} \\
& \text { components: } v_{x}=\frac{d x}{d t}, v_{y}=\frac{d y}{d t}, v_{z}=\frac{d z}{d t} \\
& \vec{a}_{\text {avg }}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}}, \quad \vec{a}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}
\end{aligned}
$$

Relative motion
$\vec{r}_{P A}=\vec{r}_{P B}+\vec{r}_{B A}$
$\vec{v}_{P A}=\vec{v}_{P B}+\vec{v}_{B A}$ $\vec{a}_{P A}=\vec{a}_{P B}$

1D Motion $a=$ constant
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$
$v=v_{0}+a t$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
If two objects - same place
$x_{1}=x_{2}$ (same time)

2D Projectile Motion

$x=x_{0}+v_{0} \cos \theta_{0} t$
$y=y_{0}+v_{0} \sin \theta_{0} t-\frac{1}{2} g t^{2}$
$v_{x}=v_{0} \cos \theta_{0}$
$v_{y}=v_{0} \sin \theta_{0}-g t$
Special cases:

1. $y_{f}=y_{0}$ (same ground)
2. $\theta_{0}=0^{0}$ (horizontal launch)
3. $\theta_{0}=90^{\circ}$ (vertically launch)

Uniform Circular Motion

$a=\frac{v^{2}}{r}, \quad T=\frac{2 \pi}{v}$

Frame A

Dynamics

Newton's Second Law:
For any particle of mass m, the net force \vec{F} on the particle is always equal to the mass m times the particle's acceleration:

$$
\vec{F}=m \vec{a}
$$

Forces
Gravity $\quad F_{g}=m g \quad$ toward the ground
Normal $\quad N=m g \cos \theta \pm F_{\text {external }, \perp} \quad$ perpendicular to the surface (and away)
Tension T
Static friction $f_{s} \leq \mu_{s} N$
Kinetic friction $f_{k}=\mu_{k} N$

Newton's Third Law:

If object 1 exerts a force \vec{F}_{21} on object 2, then object 2 always exerts force \vec{F}_{12} on object 1 given by

$$
\vec{F}_{12}=-\vec{F}_{21}
$$

2D Linear (Translational) Motion
$F_{n e t, x}=m a_{x}$
$F_{n e t, y}=m a_{y}$

Centripetal force

$F_{n e t, R}=\frac{m v^{2}}{R}$ (toward the center of rotation)

Problem Solving: For every object we have to draw a free-body diagram.

1) Include ALL forces acting on the body matter. 2) If a problem includes more than one body draw a separate free-body diagram for each body. 3) Not to include: any forces that the body exerts on any other body.

Energy

Kinetic Energy
$K=\frac{1}{2} m v^{2}$
Potential Gravitational
$U_{g}(y)=m g y$
Potential Elastic
$U_{s}(x)=\frac{1}{2} k x^{2}$

Work

$$
W(i \rightarrow f)=F_{x}\left(x_{f}-x_{i}\right)+F_{y}\left(y_{f}-y_{i}\right)
$$

$$
W(i \rightarrow f)=\vec{F} \cdot \vec{d}=F d \cos \theta
$$

Power

$$
P_{\text {avg }}=\frac{W}{\Delta t}, \quad P=\frac{d W}{d t}=\vec{F} \cdot \vec{v}
$$

Principle of Conservation of Energy
If all of the n forces $\vec{F}_{i}(i=1, \ldots n)$ acting on a particle are conservative, each with its corresponding potential energy $U_{i}(\vec{r})$, the total mechanical energy is constant in time $K_{i}+U_{i 1}+U_{i 2}+\cdots+U_{i n}=K_{f}+U_{f 1}+U_{f 2}+\cdots+U_{f n}$

Conservation of Energy with nonconservative forces (specifically with friction)

$$
K_{i}+U_{i 1}+U_{i 2}+\cdots+U_{i n}=K_{f}+U_{f 1}+U_{f 2}+\cdots+U_{f n}+f_{k} d
$$

Systems of Particles

Principle of Conservation of Linear Momentum: If the net force external force $\vec{F}^{\text {ext }}$ on an N particle system is zero, the system's total mechanical momentum is constant

$$
\vec{P}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}+\cdots+m_{N} \vec{v}_{N}
$$

If the net force $\vec{F}^{\text {ext }}$ acting on a system is zero, then a system moves with constant velocity $\vec{v}_{C M}=$ contant
And if initially $\vec{v}_{C M}=0$, then the position of the center of mass $\vec{R}_{C M}$ does not change despite individual positions of particles may change.

$$
\vec{R}_{C M}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\cdots+m_{n} \vec{r}_{n}}{m_{1}+m_{2}+\cdots+m_{n}}
$$

Collisions:
Elastic: $\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}$ (momentum), $\quad E_{1 i}+E_{2 i}=E_{1 f}+E_{2 f} \quad$ (energy conserved)
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} \quad v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}$
Inelastic: $\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}$ (momentum), $\quad E_{1 i}+E_{2 i} \neq E_{1 f}+E_{2 f}$ (energy - NOT conserved)
Completely inelastic collision: $m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=\left(m_{1}+m_{2}\right) \vec{v}_{f}$

Rotation

Rotational kinetic energy

$$
K=\frac{1}{2} I \omega^{2}
$$

Kinetic energy of rolling

$$
K=\frac{1}{2} M v_{c m}^{2}+\frac{1}{2} I_{c m} \omega^{2} \quad v_{c m}=\omega R
$$

Rotational Inertia (for a single particle) $I=m r^{2}$
Rotational Inertia for common objects
$I_{\text {solid cylinder }}=\frac{1}{2} M R^{2}, I_{\text {solid sphere }}=\frac{2}{5} M R^{2}$

Translational and Rotational Dynamics
(Newton's Second law)
$\vec{F}_{\text {net }}=m \vec{a}$ translational motion
$\vec{\tau}=I \vec{\alpha} \quad$ rotational motion $(\alpha=a / r)$
for rotation in (x, y) plane
$F_{n e t, x}=m a_{x}, \quad F_{n e t, y}=m a_{y}, \quad \tau_{n e t, z}=I \alpha_{z}$

Angular variables: θ, ω, α
Relating linear and angular variables

$$
s=\theta r, v=\omega r, a=\alpha r
$$

Rotational kinematics with $\alpha=$ const
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\omega=\omega_{0}+\alpha t$

Torque
$\vec{\tau}=\vec{r} \times \vec{F}=r F \sin \varphi$
$\tau_{z}=x F_{y}-y F_{x}$ for rotation in (x, y) plane

Angular Momentum
$\vec{L}=\vec{r} \times \vec{p} \quad$ (a particle), $\vec{L}=I \vec{\omega}$ (rigid body)
$\vec{\tau}_{\text {net }}=I \vec{\alpha}=\frac{d \vec{L}}{d t} \quad$ Newton's second law
if $\vec{\tau}_{n e t}=0$ then $\vec{L}=$ constant or $I_{i} \omega_{i}=I_{f} \omega_{f}$
Equilibrium (translational + rotational)
$F_{n e t, x}=0$ balance of forces
$F_{n e t, y}=0$ balance of forces
$\tau_{n e t, z}=0 \quad$ balance of torques

Math and more

Scalar (dot) product
$c=\vec{a} \cdot \vec{b}=a b \cos \theta$
$c=\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}$

Vector (cross) product $\vec{c}=\vec{a} \times \vec{b}=a b \sin \phi$ For vectors in (xy) plane $c_{z}=a_{x} b_{y}-a_{y} b_{x}$

Vectors (components)
$a_{x}=a \cos \theta, a_{y}=a \sin \theta$
$a=\sqrt{a_{x}^{2}+a_{y}^{2}}, \quad \theta=\arctan \frac{a_{y}}{a_{x}}$

Quadratic equation
$a x^{2}+b x+c=0$,
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Trigonometry
$x^{2}+y^{2}=r^{2}$
$\alpha+\beta=90^{\circ}$
$x=r \cos \alpha$
$y=r \sin \alpha$

Unit conversion (example)
$130 \mathrm{~km} / \mathrm{h}=\left(\frac{130 \mathrm{~km}}{1 \mathrm{~h}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)$
$=36.1 \mathrm{~m} / \mathrm{s}$

